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Abstract 

Clostridium difficile is a major cause of illness in healthcare environments and 
immunocompromised patients with thousands of severe cases per year in the EU. C. difficile 
has been shown to occur in foods, particularly meats, but also in vegetables and shellfish. 
Furthermore, it has been demonstrated that C. difficile produce heat resistance spores so the 
possibility for spores to survive low temperature food processing practises is clear. It is 
therefore imperative that this possible route of infection is investigated, and this proposal will 
investigate the hypothesis that food transmission of C. difficile may be responsible for non- 
healthcare associated cases. The epidemiology of C. difficile is changing, with the emergence 
of highly virulent types accompanying more severe infections, higher rates of recurrences and 
higher mortalities. One of the main reasons for these changes to epidemiology is antibiotic 
resistance. Several important mechanisms for C. difficile antibiotic resistance have been 
described, including the acquisition of antibiotic resistance genes via the transfer of mobile 
genetic elements. Resistance of C. difficile to multiple antibiotics, such as aminoglycosides, 
lincomycin, tetracyclines, erythromycin, clindamycin, penicillin’s, cephalosporins, and 
fluoroquinolones has already been demonstrated. Animal transmission (including food 
products) should be considered as a major part of antimicrobial resistance (AMR) control. 
There are programs in place to monitor animal transmission for other bacteria-antimicrobial 
combinations, but C. difficile transmission through the food chain has not yet been evaluated. 
In order to establish a possible foodborne route and its impact on AMR, appropriate 
mathematical models are essential. They can then be implemented in a quantitative microbial 
risk assessment approach (QMRA). Only if the adverse effect on the population of the 
foodborne route is correctly characterized, measures to reduce its incidence will be considered 
by regulatory bodies and industry.  
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Mini-Review 

 

Introduction 

Clostridium difficile is a spore-forming Gram-positive bacterium and is the most common 
cause of antibiotic-associated diarrhoea that can cause pseudomembranous colitis, toxic 
megacolon and fatal colitis (1). C. difficile was reclassified as Peptoclostridium difficile (2), 
but more recently has again been reclassified as Clostridioides difficile (3). C. difficile produces 
the two potent exotoxins, TcdA and TcdB and are both members of the large clostridial toxins 
(LCT) family. These exotoxins glycosylate Rho family GTPases in host cells, resulting in  the 
disruption of the actin cytoskeleton, cell death and a strong inflammatory response (4).  

Despite health practice guidelines for the prevention, diagnosis, and treatment of C. difficile 
infection (CDI), the rate of CDI continues to rise. In 2016 a report by the European Centre for 
Disease Prevention and Control (ECDC) revealed that 20 countries reported 7711 CDI cases, 
5756 of which (74.6%) were healthcare-associated CDI; 1955 CDI cases (25.4%) were either 
community-associated (CA) or of unknown origin. The CDI cases reported in 2016 contributed 
to significant morbidity and case fatality. In the United States The Centre for Disease Control 
and Prevention (CDC) reports that CDI is associated with over 14,000 deaths each year and 
resulting in more than $1 billion in excess medical costs (1). 

Until relatively recently, it was believed that C. difficile was principally a clinically associated 
infection. However, due to increased surveillance and the more frequent use of whole genome 
sequencing (WGS), the percentage of CDI acquired from clinical settings is significantly lower 
(35%) of the total cases reported and therefore the rest are considered community acquired (5). 
The actual source of C. difficile implicated in community acquired CDI is undefined although 
a foodborne link has been proposed (5-8). In this mini-review we will discuss the current 
evidence with regards to C. difficile in foods and if this may be a possible route of infection. 
We will also discuss how antimicrobial resistance is having a major impact and how 
mathematical modelling and a quantitative risk assessment approach could be used to help 
control this important pathogen. The review is a ‘snapshot’ of previous C. difficile in foods 
reviews (5, 6, 8, 9) 

 

Clostridioides difficile in food and the environment 

Sequencing of strains of C. difficile have shown that in a number of regions, animals and 
humans are colonised with undistinguishable C. difficile clones (8). Furthermore, given that 
other clostridia such as Clostridium perfringens and Clostridium botulinum are foodborne 
pathogens, this may indicate that C. difficile may follow similar routes. 

C. difficile has been isolated from the intestinal tract of many types of food animals, including 
cattle, pigs, sheep, and poultry, as well as domesticated animals, including dogs and cats (10). 
Although there is currently no definitive cost estimate on treating infection in production 
animals, it is considered to be high as C. difficile can cause mortality in breeding, weight loss, 
and delayed weight gain in animals. C. difficile has been commonly described in both healthy 
pigs and pigs with diarrhoea and is the most common cause of diarrhoea (8). As in the case of 
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pigs, the prevalence of C. difficile in cattle can vary considerably from one study to another 
depending on the geographical location studied. Furthermore, the pathogenicity in cattle is not 
understood. However, similar to swine C. difficile infection has been associated with diarrhoea. 
Finally, other production animals such as chickens, lambs, sheep and goats have been also 
described as carriers of the bacterium, with a prevalence varying between 0.6 and 10.1 % (8). 

The high prevalence of C. difficile in animals means this then translates into carriage of the 
pathogen on meat through cross-contamination events during the slaughter process or manures. 
Traditional organic fertilizers for crops, can also contain spores of the bacterium. This may 
result in C. difficile transfer to the food chain by contamination of vegetables and fruits directly 
from manures or  as a result of irrigation or washing with contaminated water (6). Indeed there 
are numerous ways C. difficile contamination may occur (figure 1) 

The contamination by C. difficile spores has been discovered in a variety of food products, 
including seafood, vegetables and meats (table 1). There is a large discrepancy in reported 
prevalence however. In North America relatively high prevalence rates (42% of beef, 41% of 
pork and 44% of turkey samples) have been reported in uncooked meat products. Whereas 
lower prevalence rates, of up to 4.3% and 2.7% in ground beef/pork and chicken meat, 
respectively, have been reported in Europe. In Canada, toxigenic C. difficile was isolated from 
28 of 230 (12%) of samples of retail ground beef and ground pork. These differences in 
reported prevalence may be due in part to the use of different methodology (5).  

 

Fig. 1. Flow diagram of the main routes of C. difficile spore contamination of foods (6) 

 

 

 

Given the prevalence of C. difficile in food animals, the environment and isolation from a 
variety food types, it is probable that this may be the source of community acquired CDI. 
However, its survival during food processing practices is presently un-clear. Lund and Peck 
(table 2) compared the thermal resistance of C. difficile spores with those of C. perfringens 
spores and stated that the spores of both organisms could survive the typical thermal processing 
temperatures used in cooking of meat and poultry products, potentially resulting in foodborne 
illness.  
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Table 1. Presence of C. difficile in meats (in processing plants or the retail trade) and other foods (at 
farms or markets). Adapted from Rodriguez 2016 (8). 

Country Year Sample type 
Prevalen

ce % 
T % toxigenic 

strains 
Main PCR-

ribotypes (%) 

Belgium 2012 
Ground and burger 

beef 
3/133 
(2.3) T (100) 

078 (33.3)/014 
(66.7) 

  
Ground and sausage 

pork 
5/107 
(4.7) T (80) 078 (20)/014 (40) 

Netherland
s 

2008-
2009 Beef meat 0/145 (0 - - 

  Pork meat 0/63 (0) - - 

  Calf meat 0/19 (0) - - 

  Lamb meat 1/16 (6.3) T (100) 045 (100) 

  Chicken meat 
7/257 
(2.7) T (2.7) 001/003/087/071 

Switzerlan
d 2010 Minced meat products 0/46 (0) - - 

France 
20017
-2008 Ground beef 2/105 T (100) 012 (100) 

  Pork sausage 0/59 - - 

Austria 
2007-
2008 Ground meat 3/100 T (66.7) 053 (33.3) 

 2008 Beef meat 0/51 (0) - - 

  Pork meat 0/27 (0) - - 

  Chicken meat 0/6 (0) - - 

Sweden 2008 Ground meat 2/82 (2.4) T (100) - 
 

Table 2. Heat Resistance of Spores of C. difficile and C. perfringens. Adapted from Lund & Peck (10). 

Heating medium Strains tested D value at specified 
temperature 

C. difficile 

 Phosphate buffer 108 strains D100°C=2.5–33 min 

 Distilled water 4 strains D100°C=∼4–6 min 

 Phosphate-buffered saline 20 strains D71°C=∼30 min 

 Phosphate –buffered saline 22 strains D85°C=6.0–8.5 min 

 Gravy, 0% fat; lean ground beef, 3% fat; 
ground beef 30% fat. 

4 strains D96°C=0.59–1.19 min 

 Gravy, 0% fat; lean ground beef, 3% fat; 
ground beef 30% fat. 

4 strains D85°C=2.5–3.3 min 

 Gravy, 0% fat; lean ground beef, 3% fat; 
ground beef 30% fat. 

4 strains D71°C=47–71 min 

C. perfringens 

 Culture medium 5 strains; chromosomal cpe gene D100°C=30–124 min 

 Culture medium 7 strains; plasmid cpe gene D100°C=0.5–1.9 min 

 Culture medium 14 strains; chromosomal cpe gene D100°C=30–170 min 

 Phosphate buffer 10 strains; chromosomal (plus one 
plasmid) cpe gene 

D95°C=>7.5 min 

 Phosphate buffer 5 strains; plasmid cpe gene D95°C=<7.5 min 

D value, time at specified temperature for 10-fold reduction in viable numbers. 
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Characterization of heat resistance of bacteria and bacterial spores requires a precise 
methodology to efficiently describe its inactivation process. Commercial heat processes have 
complex profiles, therefore equipment that can simulate dynamic heating conditions can more 
accurately describe the inactivation kinetics of bacteria and spores (11). Such equipment has 
been extensively used to establish heat resistance of bacteria and food components (12). The 
first models used in predictive microbiology assumed that the bacterial population reduction 
followed a log-linear relationship with time during an isothermal treatment (13). Mathematical 
models to describe dynamic inactivation profiles have been developed by extending the ones 
used for isothermal treatments (14, 15). Increase in heat resistance has been related to 
adaptation/acclimation and can justify survival of pathogenic bacteria. Recently, a 
mathematical model to describe dynamic thermal inactivation of microorganisms, taking into 
account the acclimation to thermal stress, has been developed (16). Although there are data 
describing heat inactivation of C. difficile, they are based on classical D and z values, so 
presence of non-linear kinetics or development of acclimation have not been evaluated up to 
date.  

Furthermore, for C. perfringens, there is information on the temperatures permitting 
germination and growth and on rates of growth, enabling evidence-based determination of the 
rate of growth during cooling of cooked foods; this in turn allows the determination of 
temperature controls and a cooling regimen to prevent growth of this bacterium Moreover, 
more Information is required on conditions in which surviving spores of C. difficile would 
germinate and vegetative bacteria would multiply in cooked meat dishes, or whether the spores 
would persist, and whether the spores or vegetative bacteria would result in asymptomatic or 
symptomatic infection after consumption of the meat (10). This information requires advanced 
modelling to integrate data in a risk assessment of foodborne CDI. 

 

Clostridioides difficile Anti-microbial resistance 

Antimicrobial resistance (AMR) is responsible for an estimated 25,000 deaths per year in the 
EU and costs the EU 1.5 billion euros per year in healthcare costs and productivity losses .In 
June 2017 the Commission adopted the EU One Health Action Plan against AMR. Antibiotic 
use is considered to be the most significant risk factor for CDI. Furthermore, C. difficile is a 
spore-forming organism and can survive antimicrobial therapy and therefore following 
germination, relapse of CDI can occur after the cessation of therapy. Antibiotics for instance 
metronidazole, vancomycin and fidaxomicin are therapies of choice for C. difficile infection. 
Numerous mechanisms for C. difficile antibiotic resistance have been described, including the 
acquisition of antibiotic resistance genes via the transfer of mobile genetic elements, selective 
pressure in vivo resulting in gene mutations, altered expression of redox-active proteins, iron 
metabolism, and DNA repair, as well as via biofilm formation (9). The emergence and spread 
of C. difficile isolates resistant to multiple antibiotics, especially among the hypervirulent C. 
difficile ribotype 027 strains, is an increasing problem for the treatment of CDI.  

Diverse antibiotic resistances have been noted from isolates originating from animal/food 
production (Table 3). For instance, clindamycin resistance has been observed in cattle and 
linezolid resistance has been observed in pigs (7). Perhaps the most concerning and of 
relevance is the emergence of metronidazole resistance in C. difficile as it has been found 
occurring in both animal and human C. difficile isolates (17). In American lettuce C. difficile 
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isolates were identified as having antibiotic resistance to metronidazole, vancomycin, and 
erythromycin. In Canada two C. difficile strains from ginger had different antimicrobial 
reactions to levofloxacin and clindamycin (18). Furthermore, Isolates from ready-to-eat salads 
were susceptible to vancomycin and metronidazole but variably resistant to other antimicrobial 
drugs (19). Regardless of species, multiple drug resistance is most often observed to 
combinations of clindamycin and levofloxacin and ampicillin, clindamycin and levofloxacin. 

CDI remains a significant and increasing healthcare-associated infections, with antibiotic 
exposure being a well-established risk factor for CDI and recurrence. Moreover, the role of 
CDI in the community should be further evaluated.  

 
Table 3. Antimicrobial resistance profile of 376 multiple resistant C. difficile isolates. A total of 376 C. 
difficile strains (94 each from swine and dairy faeces, and 188 from beef cattle faeces) were isolated 
from healthy food animals on farms during studies conducted by the National Animal Health 
Monitoring System. Using the Etest (AB Biodisk, Solna, Sweden), samples were tested for 
susceptibility to nine antimicrobials implicated as risk factors for C. difficile associated disease (9). 

 

LZ = Linezolid, XL = Amoxicillin-clavulanic acid, AM = Ampicillin, CM = Clindamycin, 
EM = Erythromycin, MZ = Metronidazole, LE = Levofloxacin, RI = Rifampicin, VA = 
Vancomycin. 
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Application of predictive modelling and integration in a foodborne CDI risk assessment.  

Mathematical modelling is a key tool in predictive microbiology to describe and quantify 
processes, establish relationships and optimize conditions that can be integrated in microbial 
risk assessment (20). Modelling is in iterative process that includes different steps, where 
model structure and parameter estimates are outstanding aspects. Parameter estimation requires 
experimental data, that should provide as much information as possible of the process 
evaluated. In this regard, optimal experimental design (21) is a big step forward in the 
modelling scheme. Sometimes models include parameters with small significant influence on 
the effects analysed or presenting high correlation to other model parameters. Sensitivity and 
identifiability analysis allow to detect these problems, designing informative models that avoid 
over-parametrisation (22). The complexity of these tasks increases significantly in the case of 
non-linear dynamic models, as those required for germination or heat inactivation studies.  

In order to establish a foodborne CDI risk assessment, adequate models should be used to 
describe all the steps involved in the onset of disease (23). Open access tools, specially software 
with a hands-on format, that can run “R” code in the background, enable the use by scientists 
without programming background. Bio-inactivation (figure 2) is an example to estimate 
inactivation parameters using different models available (24).  

 

Fig 2. Overview of Bioinactivation Shiny R-Studio (from Garre et al., 2017).  

 

 

Microbial risk assessment consists of four steps, according to CODEX: hazard identification, 
exposure assessment, hazard characterization and risk characterization. Hazard identification 
involves the definition of the problem, i.e. identification of the relevant pathogen(s) and food 
product. Then, exposure assessment is performed, identifying the pathways that can lead to 
human consumption of pathogens or toxins. Hazard characterization, relates the probability 
and severity of contracting an illness when a given dose of the pathogenic microorganism (or 
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toxin) is consumed. Finally, risk characterization integrates the previous three steps to estimate 
the probability and severity of an outcome (e.g. illness or death) for a given scenario. Sensitivity 
analysis is also a crucial tool in quantitative microbial risk assessment, to identify parameters 
or steps in the food chain that are critical in relation to a risk for the consumer. Methods based 
on Monte Carlo simulations have been widely used in risk assessment, although they present 
limitations for sensitivity analysis due to the computational cost associated and their uni-
directional without retro-feeding among model parameters. An alternative is the use of 
Bayesian Belief Networks (25, 26) Once a model has been validated, the next step would be 
its use in optimization tasks. The presence of multiple opposed objectives is frequent in 
processes such as germination or microbial inactivation (some factors will increase some of 
them, whereas others will reduce them). Multi-objective techniques (27) can be applied to 
obtain a Pareto front, that provides a group of optimal solutions considering all the objectives 
and is a powerful decision tool. For nonlinear, dynamic models, such as those describing 
process in predictive microbiology, the most efficient techniques of multi objective 
optimization are those based on evolutive algorithms  (28). 

Therefore, in order to perform a foodborne CDI QMRA, it is essential to collect information 
available from literature and to generate high quality data where a lack of knowledge exists. 
Then, the most up-to-date models available (or new developments) should be used to analyze 
results and implement them in a quantitative microbiological risk assessment. Only then, 
sufficient evidence will be provided to establish the impact of the foodborne transmission 
routeon the consumer health. Providing scenarios will allow health authorities and regulatory 
bodies to consider mitigation measures in order to reduce the incidence of unexplained C. 
difficile infections in the EU.  
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